![]() Window blind
专利摘要:
A window blind includes a housing, a slat assembly, a slat angle adjusting device, and a first cord. The slat assembly is 5 provided below the housing, and has multiple slats and a bottom end portion. The slat angle adjusting device includes a rotating shaft assembly provided in the housing, and a ladder assembly which includes at least two ladders connected to the rotating shaft assembly for turning the slats. The first cord passes on 10 a front or a rear side of the slats, and connects the rotating shaft assembly and the bottom. end portion. Throughout the duration of the rotation of the rotating shaft assembly, the first cord and a warp, which belongs to the ladder assembly and on the same side as the first cord, are both reeled into or out 15 of the housing concurrently, and the slats and the bottom end portion are all rotated concurrently as well. 公开号:NL2026781A 申请号:NL2026781 申请日:2020-10-28 公开日:2021-09-01 发明作者:Luo Lei;Chen Lin 申请人:Nien Made Entpr Co Ltd; IPC主号:
专利说明:
[0001] [0001] The present disclosure relates generally to a window blind, and more particularly to a window blind that could have its slats fully closed. Description of the Prior Art [0002] [0002] An ordinary window blind usually has a headrail, a bottom rail, and a plurality of slats provided between the headrail and the bottom rail. The operations a window blind could provide include lifting and lowering the slats and changing the tilt angles thereof. By lifting and lowering the window blind, the total area covered by the slats can be adjusted; by changing the tilt angles of the slats, the sizes of the gaps between slats can be adjusted to determine how much light could pass through. [0003] [0003] However, it is not uncommon for a conventional window blind, especially a cordless one, to be unable to achieve a completely closed state (i.e., to provide a full light-blocking effect) while adjusting the gaps between slats. For instance, a window blind that only has conventional ladders is prone to have irregularly arranged slats. When the slats are supposed to be completely closed, there may still be light leaking in on left or right sides. In another example, for a window blind which not only has ladders but also lifting cords, the lengths of its lifting cords will be fixed and no longer changeable once the window blind is completely lowered. At this time, if the slats are going to be turned to a fully closed position, the fixed lengths of the lifting cords will hinder the turning of the bottom rail. This problem is particularly obvious if the lifting cords are provided on the front and rear sides of the slats. Specifically speaking, after the slat assembly is fully expanded, the lengths of the lifting cords on the front and rear sides are fixed. If the slats are to be rotated to a fully closed position, the warps of each of the ladders must have a relative vertical movement. However, since the lengths of the lifting cords are not changeable in such condition, the bottom rail will not be allowed to rotate to a fully closed position. As a result, the slats near the bottom rail may not be able to rotate to a fully closed position as well, leading to an unsatisfactory closing effect for the window blind.SUMMARY OF THE DISCLOSURE [0004] [0004] In view of the known problem mentioned above, one aspect of the present disclosure is to provide a window blind that provides a slat assembly, of which the bottom end portion could rotate all the way along with the rotation of the slats. In other words, the turning of the bottom end portion of the slat assembly would not be hindered by the fixed lengths of the lifting cords. In this way, the window blind provided in the present disclosure could solve certain problems, including the imperfect closing effect for window blind slats and the unwanted light leakage. [0005] [0005] The present disclosure provides a window blind, which includes a housing, a slat assembly, and a slat angle adjusting device. The housing is defined to have a longitudinal axis, a lateral axis, and a vertical axis, wherein the longitudinal axis and the lateral axis are perpendicular to each other, and are both on a same horizontal plane; the vertical axis is perpendicular to the longitudinal axis, and is in a same direction as a normal of the horizontal plane; the longitudinal axis passes through lateral sides of the housing, the lateral axis passes through front and rear sides of the housing, and the vertical axis passes through top and bottom sides of the housing. The slat assembly is provided below the housing, wherein the slat assembly includes a plurality of slats and a bottom end portion; the bottom end portion is located below the slats so that the slats are between the bottom end portion and the housing. The slat angle adjusting device includes a rotating shaft assembly, a ladder assembly, and a first cord. The rotating shaft assembly is provided in the housing and is parallel to the longitudinal axis. The ladder assembly includes at least two ladders, wherein each of the ladders has a front warp and a rear warp; both the front warp and the rear warp are provided in a direction parallel to the vertical axis and are spaced apart from each other. A plurality of wefts are provided at intervals between the front warp and the rear warp, making each of the ladders have a ladder shape. Each weft is provided with one of the slats, so that the slats are arranged in the direction parallel to the vertical axis at intervals between the front warp and the rear warp. The front warp and the rear warp are connected to the rotating shaft assembly to be driven by the rotating shaft assembly to create a relative movement in the direction parallel to the vertical axis, whereby to drive the slats to turn. The first cord passes on one of a front side and a rear side of the slats, wherein a top end of the first cord is concurrently movable along with the rotating shaft assembly, and a bottom end of the first cord is connected to the bottom end portion. When the rotating shaft assembly is driven to rotate, the first cord and the front warps or the rear warps of the ladder assembly which is on a same side as the first cord are concurrently reeled into or released out from the housing throughout a rotation of the rotating shaft assembly, and the slats and the bottom end portion are also concurrently rotated throughout the rotation of the rotating shaft assembly. [0006] [0006] In an embodiment, at least one of the ladders has a plurality of thread loops provided on one of the front warp and the rear warp; each of the slats has a perforation corresponding to one of the thread loops; the first cord, in a direction parallel to the vertical axis, sequentially passes through all of the thread loops, each of which has passed through the corresponding one of the perforations, whereby to restrict the slats frommoving relative to the ladder assembly in directions parallel to the longitudinal axis. [0007] [0007] In an embodiment, the rotating shaft assembly includes a rotating shaft, a first rotating member, a second rotating member, and a third rotating member. The rotating shaft is located in the housing in a direction parallel to the longitudinal axis. The first rotating member, the second rotating member, and the third rotating member are provided in a manner that each of them is concurrently movable along with the rotating shaft. Top ends of the front warp and the rear warp of one of the ladders are respectively connected to the first rotating member, while top ends of the front warp and the rear warp of another one of the ladders are respectively connected to the second rotating member. The top end of the first cord is connected to the third rotating member. When the rotating shaft is driven to rotate, the first rotating member, the second rotating member, and the third rotating member are rotated along with a rotation of the rotating shaft. [0008] [0008] In an embodiment, the window blind further includes a second cord, wherein the second cord passes on the other one of the front side and the rear side of the slats opposite to the first cord. A top end of the second cord is concurrently movable along with the rotating shaft assembly, and a bottom end of the second cord is connected to the bottom end portion of the slat assembly. When the rotating shaft assembly is driven to rotate, the second cord and the front warps or the rear warps of the ladder assembly which is on a same side as the second cord are concurrently reeled into or released out from the housing throughout the rotation of the rotating shaft assembly. [0009] [0009] In an embodiment, the rotating shaft assembly includes a rotating shaft, a first rotating member, a second rotating member, a third rotating member, and a fourth rotating member. Top ends of the front warp and the rear warp of one of the ladders are concurrently movable along with the first rotating member, while top ends of the front warp and the rear warp of another one of the ladders are concurrently movable along with the second rotating member. The top end of the first cord is concurrently movable along with the third rotating member. The top end of the second cord is concurrently movable along with the fourth rotating member. When the rotating shaft is driven to rotate, the first rotating member, [0010] [0010] In other embodiments, the third rotating member and the 5 first rotating member are integrally made as a first rotating drum; or, the third rotating member, the fourth rotating member, and the first rotating member are integrally made as a first rotating drum; or, the third rotating member and the first rotating member are integrally made as a first rotating drum; the second rotating member and the fourth rotating member are integrally made as a second rotating drum. [0011] [0011] In an embodiment, in the first rotating drum, the third rotating member and the fourth rotating member are connected. The top end of the first cord and the top end of the second cord are connected. The front warp and the rear warp of one of the ladders are respectively provided at the first rotating member in a non-movable manner. A segment of the first cord near the top end thereof is wound around the third rotating member in a manner that said segment is non-movable relative to the third rotating member. [0012] [0012] In an embodiment, the top end of the first cord and the top end of the second cord are connected. The first cord passes by the third rotating member, and the second cord passes by the fourth rotating member. When the rotating shaft is driven to rotate, the first cord and the second cord create a relative movement along with the front warps and the rear warps which also have a relative movement. [0013] [0013] In an embodiment, the third rotating member and the fourth rotating member are integrally made to form a cord rotating drum. When the rotating shaft is driven to rotate, the cord rotating drum, the first rotating member, and the second rotating member are rotated along with the rotating shaft to make the front warps and the rear warps of the ladder assembly create a relative movement, and to drive the first cord and the second cord to create a relative movement as well. [0014] [0014] With the design mentioned above, the window blind provided in the present disclosure has the following advantages: [0015] [0015] (1) Through the cooperation between the first cord and the thread loops of the corresponding ladder, the slats could be prevented from moving from side to side in a direction parallel to the longitudinal axis, and therefore there would be no lateral misalignments, which could avoid the problem that irregular light leakage may happen on lateral sides of the slat assembly even when the slats are entirely closed; [0016] [0016] (2) With the structural arrangement described above, the first cord (and the second cord) could correspondingly create a relative vertical movement along with the front warp and the rear warp of the corresponding ladder while the rotating shaft is being rotated, so that the bottom end portion (i.e., the bottom rail) could be rotated as well throughout the whole process of adjusting the tilt angle of the slats, whereby to prevent the problem that the slats may be imperfectly closed due to the fixed-length cords. Furthermore, the bottom end portion (i.e., the bottom rail) could gently and smoothly change its tilt angle along with the slats while the tilt angle of the slats is being adjusted. [0017] [0017] These and other objectives of the present disclosure will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.BRIEF DESCRIPTION OF THE DRAWINGS [0018] [0018] The present disclosure will be best understood by referring to the following detailed description of some illustrative embodiments in conjunction with the accompanying drawings, in which: [0019] [0019] FIG. 1 is a front view of the window blind of a first embodiment of the present disclosure, showing the condition that the slat assembly is fully expanded and the slats are horizontally arranged; [0020] [0020] FIG. 2 is a perspective view of FIG. 1 seen from a different angle; [0021] [0021] FIG. 3 is an enlarged view extracted from the perspective view of the rear side of FIG. 1, showing the arrangement that the first cord passes through the thread loops, each of which has already passed through the perforation of the corresponding one of the slats; [0022] [0022] FIG. 4 is a schematic view similar to FIG. 2, but the outer casing of the bottom end portion is omitted to reveal the arrangement that the lifting device is provided at the bottom end portion; [0023] [0023] FIG. 5 is a schematic view of the lifting device of FIG. [0024] [0024] FIG. 6 is a perspective view of the window blind of the first embodiment of the present disclosure, showing the condition that the slat assembly is fully collapsed (i.e., gathered); [0025] [0025] FIG. 7 is a partial schematic view of the lifting device when the slat assembly shown in FIG. 1 is fully expanded; [0026] [0026] FIG. 8 is a partial schematic view of the lifting device when the slat assembly shown in FIG. 6 is fully collapsed; [0027] [0027] FIG. 9 is a partial schematic view, showing part of the slat angle adjusting device; [0028] [0028] FIG. 10 is a left side view showing part of FIG. 1; [0029] [0029] FIG. 11 is an enlarged perspective view of FIG. 10, showing the arrangement of the first rotating drum, the ladders, and the cord assembly; [0030] [0030] FIG. 12 is a perspective view of the first rotating drum of FIG. 11; [0031] [0031] FIG. 13 is a perspective view of FIG. 11 seen from another angle; [0032] [0032] FIG. 14 is a perspective view of the first rotating drum of FIG. 13; [0033] [0033] FIG. 15 is a front view of the window blind of the first embodiment of the present disclosure, showing the condition that the slats of the slat assembly are fully closed in a manner that the rear side of each slat is higher than the front side thereof; [0034] [0034] FIG. 16 is a perspective view of FIG. 15 seen from a different angle, also showing the window blind in the condition that the slats of the slat assembly are fully closed with their rear side higher than their front side; [0035] [0035] FIG. 17 is a left side view showing part of FIG. 15; [0036] [0036] FIG. 18 is a front view of the window blind of the first embodiment of the present disclosure, showing the condition that the slats of the slat assembly are fully closed in a manner that the front side of each slat is higher than the rear side thereof; [0037] [0037] FIG. 19 is a perspective view of FIG. 18 seen from a different angle, also showing the window blind in the condition that the slats of the slat assembly are fully closed with their front side higher than their rear side; [0038] [0038] FIG. 20 is a left side view showing part of FIG. 18; [0039] [0039] FIG. 21 is a partial schematic view of the window blind of a second embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly when the slat assembly is fully expanded and the slats are horizontally arranged; [0040] [0040] FIG. 22 is a left side view of FIG. 21; [0041] [0041] FIG. 23 is a partial left side view of the window blind of the second embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly when the slats of the slat assembly are fully closed in a manner that the rear side of each slat is higher than the front side thereof; [0042] [0042] FIG. 24 is a partial left side view of the window blind of the second embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly when the slats of the slat assembly are fully closed in a manner that the front side of each slat is higher than the rear side thereof; [0043] [0043] FIG. 25 1s a partial perspective view of the window blind of a third embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly of the slat angle adjusting device; [0044] [0044] FIG. 26 is a partial front view of FIG. 25, showing the arrangements of the first rotating member and the cord rotating drum; [0045] [0045] FIG. 27 is a perspective view of FIG. 26 seen from another angle; [0046] [0046] FIG. 28 is a partial schematic view of FIG. 27, showing the arrangements of the first rotating member and the cord rotating drum; [0047] [0047] FIG. 29A is a partial left side view of the window blind of the third embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly when the slat assembly is fully expanded and the slats are horizontally arranged; [0048] [0048] FIG. 29B is a right side view of FIG. 239A; [0049] [0049] FIG. 30A is a partial left side view of the window blind of the third embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly when the slats of the slat assembly are fully closed in a manner that the rear side of each slat is higher than the front side thereof; [0050] [0050] FIG. 30B is a right side view of FIG. 30A; [0051] [0051] FIG. 31A is a partial left side view of the window blind of the third embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly when the slats of the slat assembly are fully closed in a manner that the front side of each slat is higher than the rear side thereof; [0052] [0052] FIG. 31B is a right side view of FIG. 314; [0053] [0053] FIG. 32 is a partial schematic view of the window blind of a fourth embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly when the slat assembly is fully expanded and the slats are horizontally arranged; [0054] [0054] FIG. 33 is a left side view of FIG. 32; [0055] [0055] FIG. 34 is a partial left side view of the window blind of the fourth embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly when the slats of the slat assembly are fully closed in a manner that the rear side of each slat is higher than the front side thereof; and [0056] [0056] FIG. 35 is a partial left side view of the window blind of the fourth embodiment of the present disclosure, showing the arrangement of the rotating shaft assembly when the slats of the slat assembly are fully closed in a manner that the front side of each slat is higher than the rear side thereof.DETAILED DESCRIPTION [0057] [0057] As shown in FIG. 1 and FIG. 2, a window blind provided in the present disclosure includes a housing 10, a slat assembly 20, a slat angle adjusting device 30, and a cord assembly 40. Said housing 10 is a substantially hollow cuboid with a receiving space inside. Herein we define a longitudinal axis 11, a lateral axis 12, and a vertical axis 13, wherein the longitudinal axis 11 passes through left and right sides of the housing 10; the lateral axis 12 and the longitudinal axis 11 are perpendicular to each other, and share a same horizontal plane. Furthermore, said lateral axis 12 passes through front and rear surfaces of the housing 10. The vertical axis 13 is parallel to a normal direction of the horizontal plane shared by the longitudinal axis 11 and the lateral axis 12; in other words, the vertical axis 13 passes through top and bottom surfaces of the housing 10. That means the longitudinal axis 11, the lateral axis 12, and the vertical axis 13 are parallel to the directions of length, width, and height of the housing 10, respectively. [0058] [0058] The slat assembly 20 is provided below the housing 10, wherein said slat assembly 20 includes a plurality of slats 21 and a bottom end portion 22. The bottom end portion 22 is located below a bottommost position of the slats 21, and corresponds to the housing with the slats 21 located in between. The bottom end portion 22 of the slat assembly 20 can be simply a long plate, or can be a structure similar to that of the slats 21. In the current embodiment, the bottom end portion 22 is a hollow cuboid similar to the housing 10, and could have necessary mechanisms and 10 counterweight received therein if required. [0059] [0059] The slat angle adjusting device 30 includes a rotating shaft assembly 31, a ladder assembly 32, a direction-changing mechanism 33, and a control member 34. The rotating shaft assembly 31 is disposed in the receiving space of the housing 10 in a direction parallel to the longitudinal axis 11. The ladder assembly 32 includes two ladders 321, 322 spaced apart from each other. Take the ladder 321 on the left side in FIG. 1 and FIG. 2 as an example: the ladder 321 has, as shown in FIG. 10, a front warp 321a and a rear warp 321b which are provided in a manner that they are parallel to the vertical axis 13, perpendicular to the lateral axis 12, and spaced apart from each other. A plurality of wefts 321c are provided at intervals in a direction parallel to the vertical axis 13 between the front warp 321a and the rear warp 321b, giving the ladder 321 a ladder-like outlook. Each of the wefts 321c has one of the slats 21 resting thereupon, so that the slats 21 are arranged at intervals between the front warp 321a and the rear warp 321b, sequentially away from the housing 10, and in a direction parallel to the vertical axis 13. The control member 34 is connected to the direction-changing mechanism 33, and the direction-changing mechanism 33 is connected to the rotating shaft assembly 31. By maneuvering the control member 34, the direction-changing mechanism 33 could be driven to operate, driving the rotating shaft assembly 31 to force the ladder assembly 32 to change a light-blocking angle {i.e., a tilt angle) of the slats 21. It has to be clarified that, [0060] [0060] The structural details of the window blind of the current embodiment are disclosed in FIG. 1 to FIG. 14. Herein we define that the slat assembly 20 has a front side and a rear side; an extension line of the lateral axis 12 intersects extension planes on the front and rear sides, which are parallel to the longitudinal axis 11 and the vertical axis 13. The cord assembly 40 includes a first cord 40a passing on the rear side of the slats 21 of the slat assembly 20, and adjacent to the rear warp 321b of the ladder 321, as shown in FIG. 10 and FIG. 11. It is worth mentioning that the rear warp 321b of said ladder 321 could be further, but not limited to, provided with a plurality of thread loops 321d; on the other hand, each of the slats 21 could be further, but also not limited to, provided with a perforation 211 corresponding to one of the thread loops 321d. This is the case in the current embodiment, wherein each of the thread loops 321d passes through the perforation 211 of the corresponding slat 21, and the first cord 40a passes through all of the thread loops 321d that already passed through the perforations 211, as shown in FIG. 3. With such design, the slats 21 could be restricted from moving relative to the ladder 321 in a direction parallel to the longitudinal axis 11. As a result, the window blind of the current embodiment would not have the problem that the slats 21 may be misaligned on lateral sides and therefore create irregular light leakage even when they are closed. [0061] [0061] Herein we are going to further explain the design and the arrangement of the rotating shaft assembly 31 of the current embodiment of the present disclosure. The rotating shaft assembly 31 includes a long, rod-like rotating shaft 311, of which a cross-section is a non-circular shape. Furthermore, said rotating shaft assembly 31 includes a first rotating member 312a and a second rotating member 312b, which both fit around the rotating shaft 311. The ladder 321 of the ladder assembly 32 has a top end connected to the first rotating member 312a, and a bottom end fixed to the bottom end portion 22 through a cord anchor 323. Similarly, the other ladder 322 has a top end connected to the second rotating member 312b, and a bottom end fixed to the bottom end portion 22 through another cord anchor 323 as well. A third rotating member 312c is further provided near the first rotating member 312a, and also fits around the rotating shaft 311, as shown in FIG. 2. Take the components on the left side in FIG, 1 and FIG. 2 as an example: the front warp 321a and the rear warp 321b of the ladder 321 are connected to the first rotating member 312a, and the first cord 40a is connected to the third rotating member 312c. In addition, the cord assembly 40 could further include a second cord 40b, which is connected to a fourth rotating member 312d, as shown in FIG. [0062] [0062] The structure of the first rotating drum 312 of the current embodiment is specifically explained below: said first rotating drum 312 has a first tube body 3121 and a first axial passage 3122, wherein the first axial passage 3122 goes through the first tube body 3121 to be passed through by the rotating shaft 311. A shape of a cross-section of the first axial passage 3122 is non-circular, and said shape matches the shape and size of the cross-section of the rotating shaft 311, so that the rotation of the rotating shaft 311 could drive the first rotating drum 312 to rotate synchronously. Furthermore, the first tube body 3121 has a first engaging slot 3123 and a second engaging slot 3124 provided thereon in a direction roughly parallel to the longitudinal axis [0063] [0063] As shown in FIG. 3 to FIG. 8, in the current embodiment, the cord assembly 40 can further include a third cord 40c and a fourth cord 40d. The second cord 40b is provided corresponding to the first cord 40a, and is located on the front side of the slats 21 of the slat assembly 20. The third cord 40c and the fourth cord 40d are close to the ladder 322 and are respectively located on the front and rear sides of the slats 21 of the slat assembly 20, [0064] [0064] After some design, said cords 40b, 40c, 40d could collaborate with the corresponding ladders 321, 322 to restrict the slats from lateral movements, as the first cord 40a mentioned above does, and could be used as lifting cords to raise and lower the slat assembly 20. If each of the cords 40a, 40b, 40c, 40d is used as a lifting cord to raise and lower the slat assembly 20, then the window blind of the current embodiment could further include a lifting device 50 provided at the bottom end portion 22 of the slat assembly 20, as in the current embodiment, wherein bottom ends of the first cord 40a, the second cord 40b, the third cord 40c, and the fourth cord 40d are respectively connected to said lifting device 50. Specifically, the lifting device 50 of the current embodiment includes a power assembly 51 and a cord reeling assembly 52, wherein the power assembly 51 includes a driving wheel 511, a spring receiving spool 512, and a spiral torsion spring 513. The driving wheel 511 and the spring receiving spool 512 are parallel to and spaced apart from each other. Two ends of the spiral torsion spring 513 are respectively connected to the driving wheel 511 and the spring receiving spool 512, and the spiral torsion spring 513 winds around the driving wheel 511 and the spring receiving spool 512 in an S-shaped manner. The cord reeling assembly 52 includes two cord reels 521, 522. In the current embodiment, the bottom ends of the first cord 40a and the second cord 40b are wound around the cord reel 521, while the bottom ends of the third cord 40c and the fourth cord 40d are wound around the cord reel 522. Each of the driving wheel 511, the cord reel 521 and the cord reel 522 has a toothed disk which can mesh with one another, so that the driving wheel 511, the cord reel 521, and the cord reel 522 could be driven to be moved concurrently by each other. [0065] [0065] When the window blind is, as shown in FIG. 1, fully expanded in the direction parallel to the vertical axis 13, most part of the spiral torsion spring 513 is wound around the driving wheel 511 to accumulate energy. During the expansion of the slat assembly 20 (i.e., while the bottom end portion 22 is moving downward), the driving wheel 511, through the toothed disks, drives each of the cord reels 521, 522 to respectively rotate in a direction of its own, so that most of the first cord 40a and the second cord 40b are released from the cord reel 521, and most of the third cord 40c and the fourth cord 40d are released from the cord reel 522 as well (as shown in FIG. 7). While the bottom end portion 22 is being pushed upward in a direction parallel to the vertical axis 13 to gather the slat assembly 20 toward the state shown in FIG. 6, the spiral torsion spring 513 which is originally wound around the driving wheel 511 gradually winds around the spring receiving spool 512 instead, whereby to release the stored energy. At the same time, the reversely rotating driving wheel 511 drives each of the cord reels 521, 522 to rotate respectively in a direction opposite to the direction in which it rotates when the slat assembly 20 is being expanded, whereby the first cord 40a, the second cord 40b, the third cord 40c, and the fourth cord 40d are respectively wound around the corresponding cord reels 521, 522, as shown in FIG. 8. However, the arrangement of the lifting device 50 is conventional, and is not limited to the implementation disclosed in the current embodiment; for different requirements, there could be more or fewer components included in the power assembly 51 and in the cord reeling assembly 52. Any mechanisms provided in the bottom end portion 22 capable of reeling in or out the cords along with the raising or lowering of the bottom end portion 22 should be considered equivalent techniques. [0066] [0066] More importantly, though the current embodiment discloses the first cord 40a, the second cord 40b, the third cord 40c, and the fourth cord 40d at once, this is merely for exemplifying purposes, and not a limitation. With respect to carrying out the objective of the present disclosure, not all of the cords are mandatory. For example, to achieve the objective of restricting the slats 21 from lateral movements and providing the function of lifting and lowering the bottom end portion 22, merely having a first cord 40a collaborating with the lifting device 50 would be simply sufficient. When taking into consideration the capability of the bottom end portion 22, which should be able to remain stable during motion and allow its turning angle to be adjusted while the tile angle of the slats 21 is being adjusted, either the second cord 40b or the fourth cord 40d could be further provided to collaborate with the first cord 40a, which means, in such circumstances, there could be two cords provided on opposite sides of the slat assembly 20, one in front and the other one in the rear, but said two cords do not always have to be provided at corresponding locations. Either way, the bottom end portion 22 could be ensured not to lean forward or backward. Furthermore, in an implementation that has only one single cord, e.g., the cord assembly 40 only has the first cord 40a near the ladder 321, the top ends of the first cord 40a and the ladder 321 could be both connected to the integrally formed first rotating drum 312. In such a case, the first rotating drum 312 is composed of, by definition, the first rotating member 312a and the third rotating member 312c (not shown). Moreover, in an implementation with two corresponding cords which are both near the ladder 321 (fox example, when the cord assembly 40 is composed of the first cord 40a and the second cord 40b only), the top ends of the first cord 40a, the second cord 40b, and the ladder 321 could be all connected to the integrally formed first rotating drum 312, wherein the first rotating drum 312 in such a scenario is, by definition, composed of the first rotating member 312a, the third rotating member 312c, and the fourth rotating member 312d, as shown in FIG. 11 to FIG. 14. In yet another example, the cord assembly 40 is also composed of the first cord 40a and the second cord 40b, but this time, only the first cord 40a is near the ladder 321; the second cord 40b is near the ladder 322 like the fourth cord 40d in FIG. 2. In such an implementation, the top ends of the first cord 40a and the ladder 321 could be both connected to the first rotating drum 312, and the top ends of the second cord 40b and the ladder 322 could be both connected to the second rotating drum 313. In this case, the first rotating drum 312 is, by definition, composed of the first rotating member 312a and the third rotating member 312c, and the second rotating drum 313 is, by definition, composed of the second rotating member 312b and the fourth rotating member 312d (not shown). In addition, the first rotating drum 312 and the second rotating drum 313 in the current embodiment both fit around the rotating shaft 311, with which sharing the same axis. However, this is not a limitation of the present disclosure. Each of the rotating members 312a, 312b, 312c, 312d or each of the rotating drums 312, 313 could be provided at another position which is non-coaxial with the rotating shaft 311, as long as it could be concurrently moved along with the rotating shaft 311. [0067] [0067] Herein we are going to describe the operating relationships between the components of the window blind of the present disclosure when the slats are closed. As shown in FIG. 2 and FIG. 9, the direction-changing mechanism 33 is connected to the rotating shaft 311, wherein the control member 34 is a long rod in the current embodiment, of which an end is connected to the direction-changing mechanism 33, and another end extends out of the housing 10 for users’ operation. The structural arrangements of the direction-changing mechanism 33 are conventional and not a claimed subject matter of the present disclosure, and therefore we are not going to describe them in detail. However, it would be understandable that since the direction-changing mechanism 33 is an ordinary component used to rotate the rotating shaft 311 by being driven through the control member 34, all kinds of direction-changing mechanisms in currently known techniques should be considered equivalent. In addition, the control member 34 used to drive the direction-changing mechanism 33 is not limited to be the long rod exemplified in the current embodiment, but could be a rope, a string, or a motor in other embodiments, as long as it could be an operating means for users to drive the direction-changing mechanism 33 to rotate the rotating shaft 311. [0068] [0068] Take the left side of FIG. 1 as an example. After the window blind is installed onto a window frame or a wall (not shown) through certain installation members 60, the window blind can be arranged in a manner that the window blind is naturally hung down and the slat assembly 20 is fully expanded, wherein the slats 21 are arranged in a horizontal state shown in FIG. 1 and FIG. 10. At this time, lengths of segments of the front warp 321a and the rear warp 321b of the ladder 321 received in the housing 10 are roughly the same, and the wefts 321c are substantially parallel to a direction of the lateral axis 12. [0069] [0069] When the control member 34 is maneuvered to rotate in a direction indicated by the arrows shown in FIG. 15 and FIG. 16, it would drive the rotating shaft 311 to rotate the first rotating drum 312. In the current embodiment, the rotation direction of the rotating shaft 311 and the first rotating drum 312 is clockwise in this situation if seen from the angle shown in FIG. 17. Since the shapes of the rotating shaft 311 and the first axial passage 3122 of the first rotating drum 312 match each other, the clockwise rotation of the rotating shaft 311 could drive the first rotating drum 312 to rotate during the whole process in a manner that the rear warp 321b of the ladder 321 and the first cord 40a are moved upward, and the front warp 321a and the second cord 40b are moved downward. As a result, the slats 21 and the bottom end portion 22 would be gradually rotated with their front side going down and rear side going up. Whereby, even though the lengths of the first cord 40a and the second cord 40b released from the lifting device 50 remain unchanged during the rotation of the rotating shaft 311, the first cord 40a and the second cord 40b could still create a relative vertical movement throughout the rotation of the rotating shaft 311, as the front warp 321a and the rear warp 321b do. Therefore, the first cord 40a and the second cord 40b could help the bottom end portion 22 to rotate together, all the way along with the rotation of the rotating shaft 311. As a result, the bottom end portion 22 would have the same turning angle as the slats (as shown in FIG. 16), regardless of the fact that the lengths of the first cord 40a and the second cord 40b are fixed. [0070] [0070] When the control member 34 is maneuvered to rotate in another direction indicated by the arrows shown in FIG. 18 and FIG. 19, the rotating shaft 311 and the first rotating drum 312 would be rotated counterclockwise, as seen in FIG. 20. Similarly, the counterclockwise rotation of the rotating shaft 311 could drive the first rotating drum 312 to rotate all the way together, and could also simultaneously drive the rear warp 321b and the front warp 321a of the ladder 321, the first cord 40a, and the second cord 40b to move in a manner that the rear warp 321b and the first cord 40a are moved downward, and the front warp 321a and the second cord 40b are moved upward. Whereby the slats 21 and the bottom end portion 22 could gradually rotate together in a way that their front side goes upward and rear side goes downward. Furthermore, similar to what mentioned above, the first cord 40a and the second cord 40b could have a relative vertical movement throughout the rotation of the rotating shaft 311, just like the rear warp 321b and the front warp 321a. In this way, the bottom end portion 22 could have the same turning angle with the slats 21, as shown in FIG. 19. [0071] [0071] A window blind of a second embodiment of the present disclosure can be seen in FIG. 21 to FIG. 24, of which first and second cords have different arrangements from the first embodiment. [0072] [0072] As shown in FIG. 21 and FIG. 22 (with FIG. 1 used as a reference), when the slat assembly 20 is fully expanded and the slats 21 are arranged in a horizontal state which can be seen in FIG. 1 and FIG. 22, lengths of segments of the front warp 321a and the rear warp 321b of the ladder 321 located inside the housing 10 are roughly the same. As shown in FIG. 23 (with FIG. 16 used as a reference), when the control member 34 is maneuvered to rotate in the direction indicated in FIG. 16, the rotating shaft 311 would drive the first rotating drum 312 to rotate. In the current embodiment, the rotating shaft 311 and the first rotating drum 312 are rotated clockwise in such situation. Furthermore, the rotation of the rotating shaft 311 would take the first rotating drum 312 to rotate together all the way, and would drive the front warp 321a and the rear warp 321b of the ladder 321, the first cord 4la, and the second cord 41b at the same time in a manner that the rear warp 321b and the first cord 4la are moved upward, and the front warp 321a and the second cord 41b are moved downward. As a result, the slats 21 and the bottom end portion 22 would gradually turn together, with their front side going down and rear side going up, so that the bottom end portion 22 could be rotated throughout the rotation of the rotating shaft 311. Therefore, the bottom end portion 22 could have the same turning angle as the slats 21 without being affected or hindered by the fact that the lengths of the first cord 41a and the second cord 41b are fixed, and the window blind could eventually reach the state shown in FIG. 16, wherein the slats 21 and the bottom end portion 22 are fully closed in a manner that the rear side thereof is higher than the front side thereof. [0073] [0073] In addition, as shown in FIG. 24 (and with FIG. 19 as a reference), when the control member 34 is operated to rotate in another direction, it drives the rotating shaft 311 and the first rotating drum 312 to rotate counterclockwise. Similarly, the rotation of the rotating shaft 311 would bring the first rotating drum 312 to rotate together all the way, whereby the rear warp 321b of the ladder 321 and the first cord 41a would be concurrently moved downward, and the front warp 321a of the ladder 321 and the second cord 41b would be moved upward at the same time. Consequently, the slats 21 and the bottom end portion 22 would be gradually rotated together, with their front side going up and rear side going down. As mentioned above, throughout the rotation of the rotating shaft 311, the first cord 4la and the second cord 41b would also create a relative vertical movement, just like the rear warp 321b and the front warp 321a, so that the bottom end portion 22 could have the same turning angle with the slats 21, making the window blind become the fully closed state shown in FIG. 19, wherein the slats 21 and the bottom end portion 22 have their front side higher than their rear side. [0074] [0074] A third embodiment of the present disclosure is shown in FIG. 25 to FIG. 28, which discloses a rotating shaft assembly different from those disclosed in the previous embodiments. FIG. 2 can be used as a reference, for FIG. 25 is seen from an angle similar to FIG. 2. The third embodiment has roughly the same structure as the first embodiment, and also includes a housing 10, a slat assembly 20, a slat angle adjusting device 30, and a cord assembly 40. Furthermore, top ends of a front warp 321a and a rear warp 321b of a ladder 321 of the ladder assembly 32 are connected to a first rotating member 312a, while top ends of a front warp 322a and a rear warp 322b of another ladder 322 is connected to a second rotating member 312b. The first cord 42a passes on the rear side of slats 21, and the second cord 42b passes on the front side of the slats 21, wherein a top end of the first cord 42a is connected to the third rotating member 312c, and a top end of the second cord 42b is connected to the fourth rotating member 312d. In the current embodiment, the third rotating member 312c and the fourth rotating member 312d are integrally made to form one single cord rotating drum 314. [0075] [0075] In the previous embodiments, the disclosed rotating members 312a, 312b, 312c, 312d all have a roughly equal perimeter, and the outline of each of the rotating members 312a, 312b, 312c, 312d is roughly cylindrical. However, in the current embodiment, the first rotating member 312a and the cord rotating drum 314 have different outlines, wherein the first rotating member 312a is roughly cylindrical, while the cord rotating drum 314 integrally formed by the third rotating member 312c and the fourth rotating member 312d is roughly olive-shaped. In addition, the first rotating member 312a and the cord rotating drum 314 respectively have engaging slots similar to the first engaging slot 3123 and the second engaging slot 3124 disclosed in the first embodiment (as shown in FIG. 12 and FIG. 14) on opposite sides thereof, wherein said engaging slots are provided to allow the top ends of the front warp 321a and the rear warp 321b of the ladder 321 and the top ends of the first cord 42a and the second cord 42b to be engaged therein, respectively. Similar to the embodiments, the top ends of the front warp 321a and the rear warp 321b of the ladder 321 can be engaged in the engaging slots on two sides of the first rotating member 312a through stop members 321e, while the top ends of the first cord 42a and the second cord 42b can be engaged in the engaging slots of the cord rotating drum 314 through stop members 42e, as shown in FIG. 29A and FIG. 29B. The related structures are similar to those mentioned above, and therefore we are not going to describe the details herein. [0076] [0076] As shown in FIG. 29A and FIG. 29B (and with FIG. 1 used as a reference), when the slat assembly 20 is fully expanded and the slats 21 are arranged in the horizontal state which can be seen in FIG. 1, FIG. 29A, and FIG. 29B, lengths of segments of the front warp 321a and the rear warp 321b of the ladder 321 located in the housing 10 are roughly the same, and lengths of the first cord 42a and the second cord 42b are roughly the same, too. [0077] [0077] As shown in FIG. 30A and 30B (and with FIG. 16 used as a reference), when the control member 34 is maneuvered to rotate in the direction indicated in these drawings, the rotating shaft 311 would be driven to rotate the first rotating drum 312. In the current embodiment, the rotation direction of the rotating shaft 311 at this time is clockwise if seen in the left side view FIG. 30A. Furthermore, the rotation of the rotating shaft 311 would drive the first rotating member 312a and the cord rotating drum 314 to rotate together all the way, driving the rear warp 321b of the ladder 321 and the first cord 42a to move upward and driving the front warp 321la of the ladder 321 and the second cord 42b to move downward at the same time. As a result, the slats 21 and the bottom end portion 22 could be further driven to gradually rotate together, with the front side thereof lower than the rear side thereof. In this way, the bottom end portion 22 could be rotated throughout the rotation of the rotating shaft 311, by which the bottom end portion 22 could have the same tilting angle as the slats without being affected or hindered by the fixed lengths of the first cord 42a and the second cord 42b, and the window blind would eventually become the state shown in FIG. 16, wherein the slats 21 and the bottom end portion 22 are fully closed with their front side lower than their rear side. [0078] [0078] As shown in FIG. 31A and FIG. 31B (and with FIG. 19 used as a reference), when the control member 34 is driven to rotate in another direction indicated in these drawings, the rotating shaft [0079] [0079] It needs to be clarified that, the first rotating member 312a and the cord rotating drum 314 can have slight different perimeters, as long as they can make the first cord 42a and the second cord 42b create a relative vertical movement along with the rear warp 321b and the front warp 321a while being rotated by the rotating shaft 311, for this capability could overcome the restriction imposed on the bottom end portion 22 by the fixed-length first cord 42a and second cord 42b, and therefore could improve the closing effect of the slat assembly 20. However, it would be preferable to have equal perimeters, so that the relative moving distance between the first cord 42a and the second cord 42b caused by the rotation of the rotating shaft 311 could be the same as that between the rear warp 321b and the front warp 321a. [0080] [0080] A fourth embodiment of the present disclosure is shown in FIG. 32 to FIG. 35, which discloses a rotating shaft assembly different from those disclosed in previous embodiments. FIG. 2 can be used as a reference, for FIG. 32 is viewed from an angle similar to FIG. 2. The fourth embodiment has roughly the same structure as the first embodiment, and also includes a housing 10, a slat assembly 20, a slat angle adjusting device 30, and a cord assembly [0081] [0081] As shown in FIG. 32 and FIG. 33, the third rotating member 312c and the fourth rotating member 312d are located in the housing 10, one in front of the other, and are near the first rotating member 312a. Top ends of the first cord 43a and the second cord 43b are connected so that the first cord 43a and the second cord 43b are in effect one single cord, which straddles the third rotating member 312c and the fourth rotating member 312d at the same time, whereby segments of the first cord 43a and the second cord 43b near the top ends thereof pass by the third rotating member 312c and the fourth rotating member 312d, respectively. Similar to the second embodiment, the first cord 43a and the second cord 43b bear the weight of the bottom end portion 22 (and the slats 21), and therefore press against the third rotating member 312c and the fourth rotating member 312d. When the first cord 43a and the second cord 43b move, the third rotating member 312c and the fourth rotating member 312d would be driven to rotate together. In other words, the movement of the first cord 43a and the second cord 43b, which is relative to the housing 10, would not be interfered with or hindered by the third rotating member 312c and the fourth rotating member 312d. Understandably, if the third rotating member 312c and the fourth rotating member 312d are replaced by pins or rods made of certain materials which are smooth enough to make the friction between these components and the first cord 43a and the second cord 43b negligible, the objective of not interfering with or hindering the movement of the first cord 43a and the second cord 43b relative to the housing 10 could be still achieved. When the slat assembly 20 is fully expanded and the slats 21 are arranged in the horizontal state shown in FIG. 1 and FIG. 33, segments of the front warp 321a and the rear warp 321b of the ladder 321 located in the housing 10 have roughly the same lengths, and lengths of the first cord 43a and the second cord 43b are also roughly the same. [0082] [0082] As shown in FIG. 34 (and FIG. 16, which is used as a reference), when the control member 34 is driven to rotate in a direction indicated in the drawing, the rotating shaft 311 would be driven to rotate the first rotating drum 312. In the current embodiment, the rotating shaft 311 would be rotated clockwise in this circumstance. Furthermore, the rotation of the rotating shaft 311 would drive the first rotating member 312a to rotate throughout the process to make the rear warp 321b of the ladder 321 move upward and the front warp 321a move downward. When the front warp 321a and rear warp 321b move, the bottom end portion 22 would be driven to rotate at the same time, in a manner that the front side thereof goes downward and the rear side thereof goes upward. When the front warp 321a and the rear warp 321b create a relative vertical movement to drive the bottom end portion 22 to rotate, the bottom end portion 22 would also drive the first cord 43a and the second cord 43b to correspondingly create a relative vertical movement at the same time, since bottom ends of the first cord 43a and the second cord 43b are connected to the bottom end portion 22. In addition, if the first cord 43a and the second cord 43b respectively contact the corresponding rear warp 321b or front warp 321a, the first cord 43a and the second cord 43b would have friction generated between itself and the corresponding rear warp 321b or the front warp 321a, which would facilitate the first cord 43a and the second cord 43b to move along with the rear warp 321b and the front warp 321a when they are creating a relative vertical movement. In this way, the first cord 43a and the second cord 43b would also have a relative vertical movement along with the rotation of the rotating shaft 311 more immediately and synchronously. Whereby, the bottom end portion 22 would have the same tilting angle as the slats 21 without being interfered with or hindered by the fixed-length first cord 43a and second cord 43k. Eventually, the window blind could become the state shown in FIG. 16, wherein the slats 21 and the bottom end portion 22 are fully closed, with their front side lower than their rear side. [0083] [0083] As shown in FIG. 35 (and in FIG. 19, which is used as a reference), when the control member 34 is maneuvered to rotate in another direction, the rotating shaft 311 would drive the first rotating member 312a to rotate counterclockwise. Similarly, the rotation of the rotating shaft 311 would drive the first rotating member 312a to rotate together throughout the process, whereby to drive the rear warp 321b of the ladder 321 to move downward and the front warp 321la to move upward. Consequently, the first cord 43a and the second cord 43b would create a relative vertical movement corresponding to the tilting angle of the bottom end portion 22. In other words, the first cord 43a could move downward along with the rear warp 321b, and the second cord 43b could move upward along with the front warp 3214, whereby the slats 21 and the bottom end portion 22 could rotate together in a manner that their front side goes upward and their rear side goes downward, which could eventually make the bottom end portion 22 to have the same tilting angle as the slats 21, and the window blind could therefore become the state shown in FIG. 19, wherein the slats 21 and the bottom end portion 22 are fully closed with their front side higher than their rear side. [0084] [0084] With the arrangements of the cords and the rotating shaft assemblies disclosed in previcusly mentioned embodiments, the slats could be truly fully closed, and the problem of irregular light leakage which may happen on lateral sides of the slat assembly due to misaligned slats could be prevented. Furthermore, the bottom end portion could be rotated properly in spite of the fact that the lengths of the cords are fixed, and this capability could improve the problem that slats near the bottom end portion may be incompletely closed when the slats are to be fully closed. In addition, through the structures and the arrangements disclosed in the present disclosure, the slats and the bottom end portion of the slat assembly could rotate throughout the duration when the rotating shaft is being driven to rotate, so that the angle of the bottom end portion could be changed along with the slats in a gentler and smoother manner till the window blind reaches the completely closed state.
权利要求:
Claims (25) [1] A window blind, comprising: a housing (10) having a longitudinal axis (11), a transverse axis (12), and a vertical axis (13), the longitudinal axis (11) and the transverse axis (12) being perpendicular to each other, and both lie in the same horizontal plane; the vertical axis (13) being perpendicular to the longitudinal axis (11), pointing in the same direction as a normal to the horizontal plane; the longitudinal axis (11) passing through sides of the housing (10), the transverse axis (12) passing through a front and rear of the housing (10), and the vertical axis (13) passing through a top and bottom of the housing (10) runs; a slat assembly (20) provided below the housing (10), the slat assembly (20) comprising a plurality of slats (21) and a lower end portion (22); wherein the lower end portion (22) is located below the slats (21) such that the slats (21) are located between the lower end portion {22} and the housing (10); and a slat angle adjusting device (30) comprising: a rotation axis assembly (31) provided in the housing (10) and parallel to the longitudinal axis (11); a ladder assembly (32) comprising at least two ladders (321, 322), each of the ladders (321, 322) having a leading wire (3214, 322a) and a trailing wire (321b, 322b), and wherein both the leading wires thread (321a, 322a) when the rear threads (321b, 322b) are provided in a direction parallel to the vertical axis (13) and are spaced from each other; wherein a plurality of wefts (321c) are provided at spaces between both the leading yarn (3214, 322a) and the trailing yarn (321b, 322b), making each of the ladders (321, 322) into a ladder shape; wherein each of the wefts (321c) is provided with one of the slats (21), such that the slats (21) are arranged in the direction parallel to the vertical axis (13) at gaps between the front thread (321a, 3224) and the rear thread (321b, 322b); wherein the leading wire (321a, 322a) and the trailing wire (321b, 322b) are connected to the rotation shaft assembly (31) to be driven by the rotation shaft assembly (31) to create relative movement in the direction parallel to the vertical axis (13), to drive the slats (21) to rotate; and a first cord (40a, 41a, 42a, 43a) running on one of a front and a back side of the slats, an upper end of the first cord (40a, 41a, 42a, 43a) being movable simultaneously with the rotary shaft assembly (31), and a lower end of the first cord (40a, 41a, 42a, 43a) is connected to the lower end portion (22); wherein when the rotary shaft assembly (31) is driven to rotate, the first cord (40a, 41a, 42a, 43a) and the front wires (321a, 322a) or the rear wires (321b, 322b) of the ladder assembly (32) which is on a same side as the first cord (40a, 41a, 42a, 43a) can be simultaneously wound in or released from the housing (10) by a rotation of the rotary shaft assembly (31), and wherein the slats (21) and the lower end portion (22) are also rotated simultaneously by the rotation of the rotary shaft assembly (31). [2] The window blind according to claim 1, wherein the rotation axis assembly (31) comprises a rotation shaft (311), a first rotation element (312a), a second rotation element {312b), and a third rotation element (312c). } wherein the axis of rotation (311) is located in the housing {10) in a direction parallel to the longitudinal axis (11); wherein the first rotation member (312a), the second rotation member (312b), and the third rotation member (312c} are provided in a manner that makes each of them movable simultaneously with the rotation axis (311); upper ends of the leading wire (321a, 322a) and the trailing wire (321b, 322b) of one of the ladders (321, 322) are respectively connected to the first rotation member (312a), while upper ends of the leading wire {321a , 322a) and the back wire ({321b, 322b) from another ladder (321, 322) are respectively connected to the second rotation member (312b); wherein the upper end of the first cord (40a, 4la, 42a, 43a) is connected to the third rotation member (312c}; wherein when the rotation shaft (311) is driven to rotate, the first rotation member (312a) )}), the second rotation member (312b), and the third rotation member (312c) are rotated with a rotation of the rotation axis (311). [3] The window blind according to claim 2, wherein the third rotation member {312c) and the first rotation element (312a) are made integrally as a first rotation drum (312). [4] The window blind of claim 3, wherein the first rotary drum (312) comprises a first tubular body (3121) and a first axial passage (3122) passing through the first tubular body (3121); the rotational axis (311) passing through the first axial passage (3122); wherein a cross-sectional shape of the rotational axis (311) matches a cross-sectional shape of the first axial passageway (3122), both of which are non-circular; wherein a first attachment slot (3123) and a second attachment slot (3124) are provided on the first tubular body (3121) in a direction substantially parallel to the longitudinal axis (11); wherein the first attachment slot (3123) and the second attachment slot (3124) are located on opposite sides of the first tubular body (3121) respectively; wherein the upper end of the leading wire (321a) of the one of the ladders (321, 322) is secured in the first attachment slot (3123); wherein the top end of the rear wire (321b) of the one of the ladders (321, 322) and the top end of the first cord (40a) are secured in the second attachment slot (3124). [5] The window blind of claim 4, wherein the first mounting slot (3123) and the second mounting slot (3124) are narrow slots, each of which has an open end and a closed end; wherein the open end of the first attachment slot (3123) is at one end of the first tubular body (3121), and the open end of the second attachment slot (3124) is at another end of the first tubular body (3121). [6] The window blind according to claim 2, wherein the slat angle adjusting device (30) further comprises a direction change mechanism (33) and a control member (34); wherein the direction change mechanism (33) is located in the housing (10), and is connected to the rotation shaft (311); wherein the control member (34) is located outside the housing; wherein the control member (34) is adapted to be actuated to drive the direction change mechanism (33) into movement to rotate the rotation axis (311). [7] The window blind of claim 1, wherein at least one of the ladders (321, 322) has a plurality of wire loops (321d) provided on one of the front wire (321a, 322a) and the rear wire (321b, 322b); wherein each of the slats (21) has a perforation (211) corresponding to one of the wire loops (321d); wherein the first cord (40a, 4la, 42a, 43a), in a direction parallel to the vertical axis (13), passes successively through all the wire loops (321d), each of which passes through the corresponding perforation (211), to prevent movement of limiting the slats (21) relative to the ladder assembly (32) in directions parallel to the longitudinal axis (11). [8] The window blind of claim 1, further comprising a second cord (40b, 41b, 42b, 43b), wherein the second cord (40b, 41b, 42b, 43b) opposes the first cord (40a, 41a, 42a, 43a) on the another runs from the front and back of the slats (21); wherein an upper end of the second cord (40b, 41b, 42b, 43b) is movable simultaneously with the rotary shaft assembly (31), and a lower end of the second cord (40b, 41b, 42b, 43b) is connected to the lower end portion (22) of the slat assembly (20); wherein when the rotary shaft assembly (31) is driven to rotate, the second cord (40b, 41lb, 42b, 43b) and the front wires (321a, 322a) or the rear wires (321b, 322b) of the ladder assembly (32) which is on a same side as the second cord (40b, 41b, 42b, 43b) can be simultaneously wound in or released from the housing (10) by the rotation of the rotary shaft assembly (31). [9] The window blind according to claim 8, wherein the rotational axis assembly (31) comprises a rotational axis (311), a first rotational element (312a), a second rotational element (312b), a third rotational element (312c). ), and comprises a fourth rotation member (312d); wherein upper ends of the leading wire (321a, 322a) and the trailing wire (321b, 322b) of one of the ladders (321, 322) are movable simultaneously with the first rotation member (312a), while upper ends of the leading wire ( 321a, 322a) and the rear wire (321b, 322Zb) of another ladder (321, 322) are movable simultaneously with the second rotation member {312b); wherein the upper end of the first cord (40a, 41a, 42a, 43a) is movable simultaneously with the third rotation member (312c}; the upper end of the second cord (40b, 41b, 42b, 43b) is movable simultaneously with the fourth rotary member (312d); wherein when the rotary shaft (311) is driven to rotate, the first rotary member (312a), the second rotary member (312b), the third rotary member (312c), and the fourth rotation member (312d) is rotated with a rotation of the rotation axis (311). [10] The window blind of claim 9, wherein the slat angle adjusting device (30) further comprises a direction change mechanism (33) and a control member (34); wherein the direction change mechanism (33) is located in the housing (10), and is connected to the rotation shaft (311); wherein the control member (34) is located outside the housing; wherein the control member (34) is adapted to be actuated to drive the direction change mechanism (33) into movement to rotate the rotation axis (311). [11] The window blind according to claim 9, wherein the third rotation member (312c) and the first rotation member (312a) are integrally made as a rotation drum (312). [12] The window blind according to claim 9, wherein the third rotation member (312c), the fourth rotation member (312d), and the first rotation member (312a) are made integrally as a first rotation drum (312). [13] The window blind according to claim 9, wherein the third rotation member (312c) and the first rotation member (312a) are made integrally as a first rotation drum (312), while the second rotation member (312b) and the fourth rotation member (312d) are made integrally as a second rotary drum (312). [14] The window blind of claim 11, wherein the first rotary drum (312) has a first tubular body (3121) and a first axial passage (3122) passing through the first tubular body (3121); the rotational axis (311) passing through the first axial passage (3122); wherein a cross-sectional shape of the rotational axis (311) matches a cross-sectional shape of the first axial passageway (3122), both of which are non-circular; wherein a first attachment slot (3123) and a second attachment slot (3124) are provided on the first tubular body (3121) in a direction substantially parallel to the longitudinal axis (11); wherein the first attachment slot (3123) and the second attachment slot (3124) are located on opposite sides of the first tubular body (3121) respectively; where the upper end of the leading wire (321a) of one of the ladders (321, 322) is mounted in the first mounting slot (3123); wherein the upper end of the rear wire (321b) of the one of the ladders (321, 322) is secured in the second attachment slot (3124); wherein the upper end of the first cord (40a) is secured in one of the first attachment slot (3123) and the second attachment slot (3124). [15] The window blind of claim 14, wherein the first mounting slot (3123) and the second mounting slot (3124) are narrow slots, each of which has an open end and a closed end; wherein the open end of the first attachment slot (3123) is at one end of the first tubular body (3121), and the open end of the second attachment slot (3124) is at another end of the first tubular body (3121). [16] The window blind of claim 12, wherein the first rotary drum (312) comprises a first tubular body (3121) and a first axial passage (3122) passing through the first tubular body (3121); the rotational axis (311) passing through the first axial passage (3122); wherein a cross-sectional shape of the rotational axis (311) matches a cross-sectional shape of the first axial passageway (3122), both of which are non-circular; wherein a first attachment slot (3123) and a second attachment slot (3124) are provided on the first tubular body (3121) in a direction substantially parallel to the longitudinal axis (11); wherein the first attachment slot (3123) and the second attachment slot (3124) are located on opposite sides of the first tubular body (3121) respectively; wherein the upper end of the leading wire (321a) of the one of the ladders (321, 322) is secured in the first attachment slot (3123); wherein the upper end of the rear wire (321b) of the one of the ladders (321, 322) is fixed in the second fastening slot {3124}; wherein the upper end of the first cord (40a) is secured in one of the first attachment slot (3123) and the second attachment slot (3124). [17] The window blind of claim 16, wherein the first mounting slot (3123) and the second mounting slot (3124) are narrow slots, each of which has an open end and a closed end; wherein the open end of the first attachment slot (3123) is at one end of the first tubular body (3121), and the open end of the second attachment slot (3124) is at another end of the first tubular body (3121). [18] The window blind of claim 13, wherein the first rotary drum (312) comprises a first tubular body (3121) and a first axial passage (3122) passing through the first tubular body (3121); the rotational axis (311) passing through the first axial passage (3122); wherein a cross-sectional shape of the rotational axis (311) matches a cross-sectional shape of the first axial passageway (3122), both of which are non-circular; wherein a first attachment slot (3123) and a second attachment slot (3124) are provided on the first tubular body (3121) in a direction substantially parallel to the longitudinal axis (11); wherein the first attachment slot (3123) and the second attachment slot (3124) are located on opposite sides of the first tubular body (3121) respectively; wherein the upper end of the leading wire (321a) of the one of the ladders (321, 322) is secured in the first attachment slot (3123); wherein the upper end of the rear wire (321b) of the one of the ladders (321, 322) is secured in the second attachment slot (3124); wherein the upper end of the first cord (40a) is secured in one of the first attachment slot (3123) and the second attachment slot (3124). [19] The window blind of claim 18, wherein the first mounting slot (3123) and the second mounting slot (3124) are narrow slots, each of which has an open end and a closed end; wherein the open end of the first attachment slot (3123) is at one end of the first tubular body (3121), and the open end of the second attachment slot (3124) is at another end of the first tubular body (3121). [20] The window blind according to claim 12, wherein, in the first rotary drum (312), the third rotary member (312c) and the fourth rotary member (312d) are connected; wherein the upper end of the first cord (4la) and the upper end of the second cord (41b) are connected; wherein the leading wire (321a) and the trailing wire (321b) of the one of the ladders (321, 322) are respectively provided at the first rotary member (3124) in a non-movable manner; wherein a segment of the first cord (4la) near its upper end is wound around the third rotation member (312c) in a manner whereby the segment is immovable relative to the third rotation member (312c); wherein a segment of the second cord (41b) near its upper end is wound around the fourth rotary member (312d} in a manner whereby the segment is immovable relative to the fourth rotary member (312d); rotation shaft (311) is driven to rotate, the first rotation drum (312) drives the first cord (41a) and the second cord (41b) to create relative motion with the front wires (321a) and the rear wires ( 321b) which also have relative motion. [21] The window blind of claim 9, wherein the top end of the first cord (43a) and the top end of the second cord (43b) are connected; wherein the first cord (43a) runs along the third rotary member (312c}, and the second cord (43b)}) passes along the fourth rotary member (312d); wherein when the axis of rotation {311) is driven to rotate, the first cord (43a) and the second cord (43b) create relative motion with the leading wires (321a) and the trailing wires (321b) also having a relative have movement. [22] The window blind of claim 9, wherein the third rotation member (312c) and the fourth rotation member (312d) are integrally formed to form a cord rotation drum (314); wherein when the rotary shaft (311) is driven to rotate, the cord rotary drum (314), the first rotary member (312a), and the second rotary member (312b) are rotated with the rotary axis (311) about causing the front wires (3214, 322a) and the rear wires (321b, 322b) of the ladder assembly (32) to move in relative motion, and to make the first cord (42a) and the second cord (42b) also move relative to make. [23] The window blind of claim 8, further comprising a lifting device (50) provided at the lower end portion (22), wherein the lower end of the first cord (40a, 41a, 42a, 43a) and the lower end of the second cord (40b, 41b, 42b, 43b) are connected to the retrieval device (50); wherein when the lower end portion (22) is moved in a direction of the vertical axis (13), the retrieval device (50) removes the first cord (40a, 41a, 42a, 43a) and the second cord (40b, 41b, 42b, 43b) releases or retracts synchronously with a movement of the lower end portion (22). [24] The window blind of claim 23, wherein the lifting device (50) comprises a drive assembly (51) and a cord winding assembly (52); the drive assembly (51) being movable simultaneously with the cord winding assembly (52); wherein the lower end of the first cord (40a, 4la, 42a, 43a) and the lower end of the second cord (40b, 41b, 42b, 43b) are respectively connected to the cord winding assembly (52); wherein when the lower end portion (22) is moved in the direction of the vertical axis (13), the drive assembly (51) drives the cord winding assembly (52) about the first cord (40a, 41a, 42a, 43a) and the second cord (40b , 41b, 42b, 43b). [25] The window blind of claim 24, wherein the drive assembly (51) includes a drive wheel (511), a helical torsion spring (513), and a spring take-up coil (512); wherein the drive wheel (511) and the spring take-up spool (512) are parallel and spaced from each other; wherein two ends of the helical torsion spring (513) are respectively connected to the drive wheel (511) and the spring take-up spool (512), so that the helical torsion spring (513) is arranged to be wound around the drive wheel (511) and the spring take-up spool; wherein the cord winding assembly (52) comprises at least one cord winding wheel (521); wherein the lower end of the first cord {40a, 4la, 42a, 43a) and the lower end of the second cord (40b, 41b, 42b, 43b)}) are respectively connected to the at least one cord winding wheel (521); wherein when the lower end portion (22) is moved downwardly in the direction of the vertical axis, the at least one cord winding wheel (521) is rotated synchronously about the first cord {41a, 4la, 42a, 43a) and the second cord (40b, 41b, 42b, 43b), and the drive wheel (511) is driven by a rotation of the at least one cord winding wheel (521) to rotate simultaneously, so that the helical torsion spring (513) is released from the spring take-up spool (512) to winding around the drive wheel (511); wherein when the lower end portion (22) is moved upwardly in the direction of the vertical axis (13), the spiral torsion spring (513) is released from the drive wheel (511) to start winding around the spring take-up spool {512} so that the drive wheel (511) synchronously drives the at least one cord winding wheel (521) to retract the first cord (4la, 41a, 42a, 43a) and the second cord (40b, 41b, 42b, 43b).
类似技术:
公开号 | 公开日 | 专利标题 AU2017200469B2|2018-02-01|Window Blind US7063122B2|2006-06-20|Bottom-up/top-down retractable cellular shade US7159635B2|2007-01-09|Lift cord spool for coverings for architectural openings US7100663B2|2006-09-05|Window covering and method of use US6834701B2|2004-12-28|Bottom-up/top-down retractable cellular shade KR20130087375A|2013-08-06|Cord tension control for top down/bottom up covering for architectural openings EP2888429B1|2018-03-07|Blind system EP3258053A1|2017-12-20|Slat control mechanism for blinds US3280890A|1966-10-25|Venetian-blind construction for taking up lift-cord slack EP3390757B1|2020-01-01|Window shade NL2026781A|2021-09-01|Window blind JP4729271B2|2011-07-20|Shielding material operating device for solar shading device KR20140035227A|2014-03-21|Cord tension control for top down/bottom up covering for architectural openings KR200363365Y1|2004-10-01|Blind JP2005058473A|2005-03-10|Curtain elevating and lowering device US10563455B2|2020-02-18|Locking mechanism for cord of window covering US11002069B2|2021-05-11|Tilt adjuster control mechanism for a venetian blind AU2014263713A1|2015-12-24|Cam unit, horizontal blind, and drive unit for sunlight blocking device JP2022042899A|2022-03-15|blind JP2000179259A|2000-06-27|Elevating device for blind JP7025503B2|2022-02-24|Blind curtain JP4409400B2|2010-02-03|Winding device and horizontal curtain with winding device JP2022042900A|2022-03-15|blind JP6604753B2|2019-11-13|Shielding device JP2020176504A|2020-10-29|Horizontal blind
同族专利:
公开号 | 公开日 JP2021116678A|2021-08-10| CN212898257U|2021-04-06| US20210222487A1|2021-07-22| AU2020260402A1|2021-08-05| GB202017162D0|2020-12-16| TWM595687U|2020-05-21| GB2591549B|2022-03-16| GB2591549A|2021-08-04|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题 US20160123073A1|2014-11-05|2016-05-05|Chin-Fu Chen|Blind body positioning mechanism for non pull cord window blind and window blind using the same| US20170292321A1|2016-04-06|2017-10-12|Nien Made Enterprise Co., Ltd.|System and device for window covering| US20180171704A1|2016-12-21|2018-06-21|Nien Made Enterprise Co., Ltd.|Window blind| US20190071925A1|2017-09-05|2019-03-07|Nien Made Enterprise Co., Ltd.|Window blind| EP3483379A1|2017-09-21|2019-05-15|Hunter Douglas Inc.|Improved lift station for a covering for an architectural structure| US5839494A|1995-02-06|1998-11-24|Judkins; Ren|Bottom and top stacking venetian type blind with fixed headrail tilt|
法律状态:
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 TW109201079U|TWM595687U|2020-01-22|2020-01-22|Venetian blinds| 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|